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1 Details on Experiments on Deep Learning Com-
puted Tomography

Our method was evaluated on the publicly available dataset from the Low Dose
CT Grand Challenge [1]. We simulated incomplete projection data for 2378
slices of 10 different patients in parallel-beam and fan-beam geometry. The slices
had a resolution of 512 × 512 pixels. A training sample for our experiment in
parallel-beam geometry consisted of a groundtruth slice as label and projection
data from an angular range of 175 degree with an angular increment of one
degree as input to the neural network. For the fan-beam experiment we used
projection data from an angular range of 180 degree also with an increment of
one degree. Separation of training and test data was performed in a ten-fold
cross validation. As evaluation measure we computed the root-mean-square
error divided by the maximum value (rRMSE) of the slice averaged over all ten
folds.

In our parallel-beam experiment, we set the reconstruction filter as a 2D filter
combining information over 5 slices but we initialize only its central elements
to the Ramachandran-Lakshminarayan filter discretization. All other weights
are initialized to zero to start learning with the classical analytic algorithm.
After the reconstruction we use a maxout [2] unit, performing an element-wise
maximum operation over four 3 × 3 filters which are finally combined by a
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convolution of a single 3× 3 filter. All those convolutional layers are initialized
from a Gaussian distribution using a mean and standard deviation of 10−3. We
used the ”RMSPROP” solver with a batch size of one, a learning rate of 10−6

and its decay parameter β set to 2 · 10−2. The reconstruction filter received a
small learning rate of 10−15.

We trained the network for a fixed number of 10000 iterations while de-
creasing the learning rate by 4% every 100 iterations and compared our method
to the results of the filtered backprojection algorithm. Our trained algorithm
achieved an error of 3.54 · 10−3%, outperforming the analytic algorithm with a
rRMSE of 6.78 · 10−3%.

In our fan-beam experiment, we used the introduced architecture which is
equivalent to filtered backprojection in fan-beam geometry and only trained the
weighting layer W using 10000 iterations of the ”ADAGRAD” solver, a learning
rate of 2·10−2 and a batch size of one. K was not altered and initialized with the
filter weights from the discretized analytical solution. The weighting layer was
initialized with appropriate cosine weights and the conventional Parker weights
for short scans [3]. Despite these few trainable parameters our trained method
reduced the rRMSE of 5.31 · 10−3% using the analytic method to 3.92 · 10−3%

(a) complete data (b) incomplete data (c) result after training

Figure 1: Comparison of different reconstruction methods in fan-beam geome-
try: (a) shows a reconstruction from a complete data set collected over 200◦ of
rotational range. (b) is reconstructed from 180◦ of data and already exhibits
strong artifacts while (c) learns to compensate for the missing data.

2 Details on Experiments on Learning from Heu-
ristic Algorithms

Our algorithms are evaluated on the Digital Retinal Images for Vessel Extraction
(DRIVE) [4] database. The database contains 40 8-bit RGB photographs of size
565×584, and is evenly divided into one training and one testing set. We further
randomly select four datasets from the training set for the validation during
the training process. All images are preprocessed using a pipeline including
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green channel extraction, CLAHE [5] and normalization. For a fair performance
evaluation, provided field of view masks are eroded inward with four pixels to
completely eliminate the border effect.

The Frangi filter is implemented over 8 Gaussian scales with σ ranging from
0.5 to 4.0. The blobness factor β and structureness factor c of all scales are set
to 0.5 and 1.0, respectively. The Frangi-Net is initialized exactly the same as the
Frangi filter. To enable end-to-end training, the multi-scale vesselness map is
followed by two convolution layers with 1×1 filters to normalize the data range
and generate the double-channel softmax output. Overall, Frangi-Net contains
6526 trainable parameters.

A trainable guided filter block [6] is further employed to preprocess images
before the Frangi-Net. The additional block employs a Context Aggregation
Network (CAN) [7] with five levels and eight features channels to generate the
guidance map, and a small CNN with two convolutional layers to extract features
from the input images. Overall, the guided filter block introduces 3050 more
parameters into the Frangi-Net workflow.

The U-Net adopted in this work has three levels and 16 channels in the initial
filter. On the basis of the original U-Net configuration, a batch normalization
layer is added after each convolution layer to stabilize the training process, and
the deconvolution layers in the expanding path are replaced with upsampling
layers followed by a 1× 1 convolution layer to avoid the checkerboard effect [8].
In total, the U-Net contains 111536 trainable parameters.

The objective function for both networks is constructed by multiplying a
weighting map which emphasizes thin vessels to the class-balanced focal loss [9]
with modulating factor of 2.0. Additionally for the U-Net, a L2-norm regularizer
of scale 0.05 is employed to alleviate the overfitting problem. The weighting map
w is created with manual labels using w = max( 1

0.18×d , 1), where d denotes the
tube diameter in the manual label. Adam optimizer is selected for objective
function minimization. The learning rates are initialized to 10−4 for Frangi-Net
pipelines and 5 × 10−4 for the U-Net, and decay after each 2,000 iterations by
10%. For Frangi-Net pipelines, each training batch is composed of 200 image
patches of size 88×88. For U-Net, each batch contains 50 patches of shape 168×
168. Data augmentation methods including rotation, shearing, Gaussian noise
and intensity shifting are employed for better generalization of the networks.

The performance comparison of Frangi filter, two Frangi-Net workflows and
the U-Net is presented in Table. 1. Output vesselness or probability maps are
binarized with a single threshold which maximizes the F1 score of the validation
set. The Frangi-Net outperforms the original Frangi filter for all evaluation
metrics, achieving an AUC score around 0.96 with fewer than 6% of the U-Net
parameters. With the trainable guided filter block for preprocessing, Frangi-
Net achieves on-par performance as the U-Net with fewer than 9% of the U-Net
unknown weights.
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Table 1: Performance evaluations of Frangi filter (FF), Frangi-Net (FN), Guided
filter layer + Frangi-Net (GF) and U-Net (UN) on the DRIVE testing sets.

specificity sensitivity F1 score accuracy AUC
FF .9616±.0150 .7528±.0612 .7477±.0323 .9341±.0089 .9401
FN .9633±.0125 .8008±.0590 .7812±.0256 .9419±.0070 .9610
GF .9729±.0060 .7982±.0546 .8048±.0191 .9498±.0048 .9719
UN .9756±.0057 .7942±.0576 .8097±.0227 .9516±.0056 .9743
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Figure 2: The derived rebinning network architecture. As C is a diagonal ma-
trix in Fourier domain it describes a convolution followed by a diagonal matrix
W in spatial domain, which is merely a point-wise multiplication. The filtered
and weighted projections are fed into a parallel-beam back-projection A>PB with
a subsequent cone-beam forward-projection ACB to obtain the projection un-
der the target geometry. Light blue nodes represent intermediate results in
projection domain, while dark blue nodes stands for volume domain.

3 Details on Experiments on Deriving Networks

Analog to the case of CT reconstruction, we can now map above formula into
a deep network and train the remaining parameters using back-propagation as
displayed in Figure 2.

The approximations for C permit two assumptions: C independent of the
projection angle or a projection dependent filter, i.e. one filter per parallel
projection. In the following we consider the results of the projection dependent
filter, for detailed discussion about both assumptions we refer to [10]. The layers
A and A> are as in the first experiment directly implemented algorithms and
can be treated as fully connected layers with fixed weights. The training of
the network is conducted with 65 numerical phantoms with 256 × 256 pixel
size for the parallel- to fan-beam rebinning geometry. The phantoms, displayed
in Figure 3, are designed to bring certain properties in the training process.
We want to highlight the properties of phantoms in Figure 3a and 3b, which
are designed to be sensitive to perspective distortion, causing strong gradients
in the training process. To ensure gradients for the full Fourier spectrum 50
noise phantoms are included into the training dataset. The training dataset
includes also circles with varying radii. To evaluate the learned algorithm on
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(a) Ellipse-bar (b) Bar (c) Noise

Figure 3: Numerical phantom types used in training. Circles with varying radii
and Ellipses are used to bring mass and homogeneous areas into the training.
The properties of the Ellipse-bar (a) and Bars (b) phantoms, both with varying
number of bars causing strong errors for the perspective distortion and the last
type is normal distributed noise (c) to cover the entire Fourier spectrum.

the Shepp-Logan phantom [11] the mean squared error (MSE) is computed and
additionally we demonstrated the trained algorithm on real parallel-beam MR
projections and computed the distorted stacked fan-beam projection. The fan-
beam projection of the Shepp-Logan phantom of the learned algorithm shows
smaller errors especially at the edges and high frequency parts, which is reflected
in the lower MSE value compared to the analytical approach. For a detailed
discussion about the result and the filter interpretations we refer to [10].

4 Proof of Known Output Operator Theorem

For the general case of g(x) being an arbitrary Lipschitz-continuous function on
compact set S, we start with

f(x) = g(u(x))

= g (û(x) + eu) .

With the property of g(x) being Lipschitz bound by lg according to Theorem 1,
we can relax its structure.

Theorem 1 (Lipschitz Bounds on Lp Norms). Let g(x) : RND → R be a con-
tinuous function. Then, there exists a constant lg ≥ 0 for which the inequalities

g(x + e) ≤ g(x) + lg||e||p (1)

g(x + e) ≥ g(x)− lg||e||p. (2)

hold for p ∈ {1, 2}.
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(a) Ground-truth
Projection

(b) Analytical
MSE: 0.47

(c) Learned
MSE: 0.41

Figure 4: The 2D Shepp-Logan Phantom is used as a quantitative measurement,
7 parallel-beam projections according to [10] are generated and rebinned to one
fan-beam projection. The ground-truth fan-beam projection is shown in (a).
The analytical rebinning result is shown in (b) as the blue line, green is the
difference to the ground-truth. The result of the newly derived algorithm is
plotted in (c) as the blue line.

Now, we use Theorem 1, Eq. 1:

g(x + eu) ≤ g(x) + lg · ||eu||p
g(x + eu)− g(x)︸ ︷︷ ︸ ≤ lg · ||eu||p

eu ≤ lg · ||eu||p
Theorem 1, Eq. 2 allows to find an analog lower bound which allows to compute

|eu| ≤ lg · ||eu||p. (3)

5 Proof of the Unknown Operator Theorem

We start with the definition of f(x) and introduce the approximations of g(x)
and u(x), compensating for the errors eg and eu:

f(x) = g(u(x)) = ĝ(u(x)) + eg

=

Nĝ−1∑
j=0

gjϕ
(
w>j u(x)

)
+ eg

=

Nĝ−1∑
j=0

gjϕ
(
w>j (û(x) + eu)

)
+ eg

=

Nĝ−1∑
j=0

gjϕ

w>j û(x) + w>j eu︸ ︷︷ ︸
euj

+ eg. (4)
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In this configuration, we use the property of ϕ(x) being Lipschitz-bounded
by lϕ. However, as the activation function appears in a linear combination, we
have to make use of a property that is derived form the Lipschitz bound.

Theorem 2 (Modified Lipschitz Bounds). Let ϕ(x) be a Lipschitz-bounded
function with Lipschitz bound l ≥ 0 and e ∈ R an arbitrary real number, then
the following inequalities hold for all gj ∈ R.

gjϕ(x+ e) ≤ gjϕ(x) + |gj | · l · |e| (5)

gjϕ(x+ e) ≥ gjϕ(x)− |gj | · l · |e|. (6)

Using Theorem 2 Eq. 5, we now arrive at the following inequality:

f(x) ≤
Nĝ−1∑
j=0

gjϕ(w>j ûj(x))︸ ︷︷ ︸
=ĝ(û(x))=f̂(x)

+
∑Nĝ−1

j=0 |gj | · lϕ · |euj
|+ eg

≤ f̂(x) +
∑Nĝ−1

j=0 |gj | · lϕ · |euj
|+ eg.

Subtraction of f̂(x) yields

f(x)− f̂(x)︸ ︷︷ ︸ ≤
Nĝ−1∑
j=0

|gj | · lϕ · |euj
|+ eg

ef ≤
Nĝ−1∑
j=0

|gj | · lϕ · |euj
|+ eg.

Now, using |eg| ≤ εg leads to

ef ≤
Nĝ−1∑
j=0

|gj | · lϕ · |euj |+ εg.

Following the idea of the upper bound, an analog lower bound (cf. Theorem 2
Eq. 6) is found:

ef ≥ −
Nĝ−1∑
j=0

|gj | · lϕ · |euj | − εg

Thus, an absolute bound for ef is found as

|ef | ≤
Nĝ−1∑
j=0

|gj | · lϕ · |euj |+ εg.
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Note that the results of the Known Output Operator Theorem and the
Unknown Operator Theorem are not in contradiction. In fact there are also
cases in which equality can be constructed. Obviously g(x) has to be known for
these cases, i. e. eg = 0:

Nĝ−1∑
j=0

|gj | · lϕ · |euj
| = lϕ

∑Nĝ−1
j=0 |gj | · |euj

|

= lϕ

Nĝ−1∑
j=0

|gj ·w>j eu|︸ ︷︷ ︸
= lϕ ||Geu||1 (7)

Here, we introduce a matrix G containing the vectors wj scaled with gj in
each row. Thus for the case of a trivial g in the form of a general function
approximator with G = I, lϕ = lg, and p = 1, equality for both theorems
is constructed. A more interesting relation is constructed using the an upper
bound for Eq. 7

lϕ · ||Geu||1 ≤ lϕ · ||G|| · ||eu||1
for a general matrix norm ||G|| consistent with || · ||1. Now, the Known Out-
put Operator Theorem becomes an upper bound for the Unknown Operator
Theorem for functions g in the form of universal function approximators with
||G|| · lϕ = lg, and p = 1, as the following equality becomes true

lϕ · ||G|| · ||eu||1 = lg · ||eu||1. (8)

6 Proof for Unknown Operators in Deep Net-
works

The proof for this bound is found by mathematical induction. We start with
the upper bound on ef ,` for component k:

ef,`,k ≤
∑̀
`i=1

||eu,`i ||p · lf`i−1
(9)

Using the definition of ef,`,k = [f`(x`)]k − [f̂`(x`)]k, we get

[f`(x`)]k ≤ [f̂`(x`)]k +
∑̀
`i=1

||eu,`i ||p · lf`i−1
(10)

The base case ` = 1 results in the multi-dimensional expansion of the Univer-
sal Approximation Theorem shown in the main paper and is therewith true.
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Therefore, we need to demonstrate the inductive step setting ` := ` + 1. With
f`+1(x`+1) = f`(u`+1(x`+1)) an additional layer is introduced into the network.
Approximation of u`+1 now yields

f`(u`+1(x`+1)) = f`(û`+1(x`+1) + eu,`+1) (11)

At this point, we can use Theorem 1 times to extract the error vector eu,`+1.

f`(u`+1(x`+1)) ≤ f`(û`+1(x`+1)) + ||eu,`+1||p · lf` . (12)

If we now use Eq. 10 to approximate f`, we arrive at

[f`+1(x`+1)]k ≤ [f̂`(û`+1(x`+1))]k + ||eu,`+1||p · lf` +
∑̀
`i=1

||eu,`i ||p · lf`i−1

≤ [̂f`+1(x`+1)]k +

`+1∑
`i=1

||eu,`i ||p · lf`i−1
.

Subtraction of [̂f`+1(x`+1)]k finally results in

ef,`+1,k ≤
`+1∑
`i=1

||eu,`i ||p · lf`i−1
. (13)

The derivation for the lower bound follows the same line just using the negative
sign.

Analysis of the recursion the reveals the connection between Lipschitz con-
stants lf` and lu`

. The Lipschitz bound of f` is found as

||f`(x`)− f`(x` + e)|| ≤ lf` ||x` − (x` + e)||. (14)

Expansion of the recursion yields

f`(x`)− f`(x` + e) = u1(. . . (u`(x`)))− u1(. . . (u`(x` + e))). (15)

Which is bounded by

||f`(x`)− f`(x` + e)|| ≤ lu1 ||u2(. . . (u`(x`)))− u2(. . . (u`(x` + e)))||
≤ lu1 · lu2 ||u3(. . . (u`(x`)))− u3(. . . (u`(x` + e)))||.
...

≤
∏̀
`i=1

lu`i
||x` − (x` + e)||. (16)

lf` ≤
∏`

`i=1 lu`i
follows.
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7 Proof of Theorem 1

We start with generalised Lipschitz definition after [12], where p ∈ {1, 2}

|g(y)− g(x)| ≤ lg||y − x||p
−lg||y − x||p ≤ g(y)− g(x) ≤ lg||y − x||p

−lg||y − x||p + g(x) ≤ g(y) ≤ lg||y − x||p + g(x)

By substituting y := x + e, the right inequality yields Eq. 1 and the left in-
equality Eq. 2.

8 Proof of Theorem 2

The Lipschitz condition for continuous functions ϕ(x) is given as

|ϕ(x+ e)− ϕ(x)| ≤ l|e|

which is equivalent to

−l|e| ≤ ϕ(x+ e)− ϕ(x) ≤ l|e|
ϕ(x)− l|e| ≤ ϕ(x+ e) ≤ ϕ(x) + l|e|

Next, we multiply with gj ∈ R \ {0}. Note that for gj = 0, the inequality is
trivial but not sufficient for the Lipschitz continuity. Now, we investigate the
resulting two cases:

• g > 0: The inequality becomes

gjϕ(x)− gj l|e| ≤ gjϕ(x+ e) ≤ gjϕ(x) + gj l|e|.

and the right inequality can be rewritten as

gjϕ(x+ e) ≤ gjϕ(x) + |gj |l|e|.

• g < 0: Here, we get

gjϕ(x)− gj l|e| ≥ gjϕ(x+ e) ≥ gjϕ(x) + gj l|e|.

Since gj = sign(gj)|gj | = −1 · |gj |, the left inequality can be rewritten as

gjϕ(x)− gj l|e| = gjϕ(x) + |gj |l|e| ≥ gjϕ(x+ e)

Hence, the following inequality is valid for all x ∈ R:

gjϕ(x+ e) ≤ gjϕ(x) + |gj |l|e|

The derivation of
gjϕ(x+ e) ≥ gjϕ(x)− |gj |l|e|

follows the respective other branch of both cases.
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